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Abstract—The Internet of Things (IoT) has become ubiquitous and greatly affected peoples’ daily lives. With the increasing
development of IoT devices, the corresponding security issues are becoming more and more challenging. Such a severe security
situation raises the following questions that need urgent attention: What are the primary security threats that IoT devices face
currently? How do vendors and users deal with these threats?
In this paper, we aim to answer these critical questions through a large-scale systematic study. Specifically, we perform a
ten-month-long empirical study on the vulnerability of 1, 362, 906 IoT devices varying from six types. The results show sufficient
evidence that N-days vulnerability is seriously endangering the IoT devices: 385, 060 (28.25%) devices suffer from at least one N-days
vulnerability. Moreover, 2, 669 of these vulnerable devices may have been compromised by botnets. We further reveal the massive
differences among five popular IoT search engines: Shodan [1], Censys [2], [3], Zoomeye [4], Fofa [5] and NTI [6]. To study whether
vendors and users adopt defenses against the threats, we measure the security of MQTT [7] servers, and identify that 12, 740 (88%)
MQTT servers have no password protection. Our analysis can serve as an important guideline for investigating the security of IoT
devices, as well as advancing the development of a more secure environment for IoT systems.

Index Terms—IoT Search Engine, Vulnerable Device Assessment.
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1 INTRODUCTION

The Internet of Things (IoT) has become an essential part
of Internet connectivity and offered great convenience to
our daily lives. For instance, router changes the way of
surfing the Internet; smart door lock avoids the cumbersome
process of door opening; voice assistant (e.g., Amazon Echo
and Google Home) enables us to interact with Internet
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services and other smart devices through voice commands.
According to Gartner, there will be more than 20 billion
IoT devices all over the world in 2020 [8]. Meanwhile,
the booming of IoT devices also raises public’s concern
about their security risks and several real-world attacks
further aggravate this panic. For instance, Mirai infected
millions of IoT devices including IP cameras, DVRs, and
routers, to form a botnet and launch DDoS attacks against
various online services [9]. Also, hackers can use light to
compromise several voice controlled IoT devices, such as
smart speakers [10].

The vendors of IoT devices try to mitigate the security
threat by making the source code of firmware unavailable
to the public, e.g., through obfuscating the source code of
firmware or disabling users’ access to the firmware. They
mainly defend against IoT attacks from the perspective
of software implementation, which, nevertheless, neglects
the a prominent problem - N-days vulnerability attack. A
typical example is that Mirai adopts this basic attack to
control millions of IoT devices [11]. In order to avoid this
attack, vendors can require users to provide automatic
firmware update mechanisms. However, with limited se-
curity awareness, most vendors do not actively offer this
essential defense in their products. Moreover, due to the
misconfiguration, a significant number of IoT devices are
exposed to the public Internet, which makes this attack even
serious. Therefore, the security issues of IoT devices are still
one of the most challenging problems in the progress of IoT
development. Towards having an in-depth understanding,
in this paper, we systematically evaluate the security of
IoT devices to figure out (i) the comprehensive view of
understanding the current security status of IoT devices; (ii)
the primary challenges they are facing currently; and (iii)
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how vendors and users deal with these challenges.
We take the first step toward evaluating the vulnerabili-

ties of IoT devices by using five popular and powerful IoT
search engines, namely Shodan [1], Censys [2], [3], Zoomeye
[4], Fofa [5] and NTI [6]. More specifically, we evaluate the
security vulnerability of IoT devices with 73 known N-days
vulnerabilities. We then discuss the relationship between the
vulnerability results of IoT devices with their locations. To
this end, we collect 8, 554, 183 IoT devices and finally obtain
1, 362, 906 potentially vulnerable IoT devices as our dataset
(after data preprocessing and the corresponding details will
be discussed in Section 3.3), which vary from six types and
involve 24 vendors. We also explore the geographical differ-
ence in the security of IoT devices. Besides, we test the no-
password protection problem on 14, 477 MQTT servers that
deploy on Amazon Web Services, Alibaba Cloud, Google
Cloud, Microsoft Azure and Tencent Cloud.

Contributions. In summary, this paper mainly makes
the following contributions:

• To the best of our knowledge, we conduct the first
systematic study to evaluate five existing popular IoT
search engines: Shodan, Censys, Zoomeye, Fofa and NTI.
We reveal the significant differences among them re-
garding search ability, data accuracy rate, responding
time and scanning period based on which we figure
out the suitable application scopes for each IoT search
engine, providing useful guidelines for IoT devices
collection.

• We conduct thus far the largest empirical study
on the vulnerability of 1, 362, 906 IoT devices and
14, 477 MQTT servers. We have identified that 385, 060
(28.25%) IoT devices are vulnerable to the N-days vul-
nerability attack, and 12, 740 (88%) MQTT servers have
no password protection. We further reveal that 2, 669
devices may have already been infected by botnets.
Besides, we confirm the geographical difference in the
security of IoT devices that most vulnerable devices are
mainly located on few countries, e.g., U.S. and China.

2 BACKGROUND

In this section, we first introduce five IoT search engines that
we compare in our work. We then discuss four IoT security
challenges that require serious consideration.

2.1 IoT Search Engines

In 2005, the International Telecommunication Union (ITU),
which is responsible for issues that concern information
and communication technologies, published a summary
indicating that the age of IoT was coming [12]. Nevertheless,
with the increasing development of IoT devices, more and
more security related problems also emerged. The general-
purpose search engines, such as Google and Bing, are not
efficient in searching IoT devices. The existing pull models
of information exchange, where the web search engines use
web crawlers to discover web server information, do not
work for most IoT cases. In 2009, the world’s first IoT search
engine Shodan [1] was brought online, which was designed
to search the Internet-connected devices. Then, a variety of
other search engines have been designed such as Censys [2],

[3], Zoomeye [4], Fofa [5] and NTI [6]. Security researchers
as well as attackers can use these IoT search engines to
understand the component coverage and the damage scope
of vulnerabilities of IoT devices. Considering that our work
dedicates to evaluating the security of IoT devices at a large-
scale, it is essential for us to choose appropriate search
engines to collect data. In this work, we mainly focus on
five IoT search engines described in detail as follows.

Shodan is the world’s first search engine for Internet-
connected devices [1]. Shodan is used around the world by
large enterprises and security researchers. It deploys mul-
tiple servers located all over the world, and these servers
provide 24/7 continuous detection through the Internet.
Due to the ongoing scanning, Shodan offers the latest In-
ternet intelligence, and users can know the influence of
a specific component or the vulnerability influence at the
Internet-scale. Shodan also provides public APIs for users,
which assist users in accessing all of Shodan’s data more
conveniently.

Censys is a platform that helps information security prac-
titioners discover and analyze IoT devices that are accessible
from the Internet [2]. Zakir et al. [3] released the first version
of Censys in 2015 and now a team includes the world’s
leading experts on Internet-wide security is supporting this
search engine. Censys has performed thousands of Internet-
wide scans over the past five years, consisting of trillions
of probes which play an important role in discovering
and analyzing several serious Internet-scale vulnerabilities:
FREAK [13], Heartbleed [14], and Mirai [9].

Zoomeye is a cyberspace search engine from China [4],
which is dedicated to recording information of devices,
websites, services and components etc. Zoomeye has two
powerful detection engines Xmap and Wmap targeting de-
vices and websites in the cyberspace, respectively. Security
researchers can use it to identify IoT devices through 24/7
continuous detection. Zoomeye is designed for threat detec-
tion and situational awareness at Internet-scale.

Fofa is a search engine for IoT devices, which aims to
make real-world data accessible and actionable in a secure
and privacy-preserving manner [5]. Fofa provides a vulnera-
bility market for its VIP users, which contains thousands of
scripts generated from PoC of N-days vulnerabilities. Users
can buy these scripts and leverage them to evaluate the
security of IoT devices.

NTI is a non-profit search engine yet not publicly opened
and is supported by NSFOCUS now [6]. NTI has detected
thousands of botnet Command & Control servers and mil-
lions of infected hosts in 2018. In addition, NTI conducts a
survey about the IoT security status each year.

These five IoT search engines all have the ability in
scanning the entire IPv4 public Internet within a short
period of time. The marked differences among them are
their different scanning periods, scanning strategies, the
amount of IoT device banner information they collected,
and the accuracy rates of their saved data. We illustrate
the comparison results of these five IoT search engines
in Section 3.2. Besides the above five IoT search engines,
there exist other two IoT search engines, Thingful [15] and
IoT Crawler [16]. Thingful provides the data mainly for the
commercial purpose rather than the security study and IoT
Crawler is still under development. Therefore, these two IoT
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search engines are not considered in our test.

2.2 IoT Security Challenges
IoT devices are omnipresent in our everyday life nowadays
and provide great convenience for users. However, they also
bring serious security problems. Heer et al. [17] discussed
the security challenges in the IP-based IoTs, where they
primarily focused on the challenges of the communication
among IoT devices. Different from their work, we present
three security challenges that have increasingly raised for
modern IoT devices.

Misconfiguration. With the help of IoT search en-
gines, it is not difficult to collect millions of IoT devices
that are connected to the Internet. For example, with the
simple keyword router, people can obtain more than ten
million related records from Zoomeye collected since 2018.
The key reason for most of these exposed IoT devices is
the misconfiguration of these devices’ owners. Due to the
limited security awareness or computer network knowl-
edge, a significant number of users may open the wide area
network (WAN) unknowingly or configure the NAT-DDNS
without any protections. However, the situation is becoming
more critical since the search engines can collect hundreds
of millions of newly exposed IoT devices each year. For
instance, Zoomeye has collected over one billion IoT devices
since it has been established. Thus, misconfiguration is one
of the most severe challenges that IoT devices face currently.

Default Credential. Most vendors offer the default
account and password for their devices, which, however,
may pose new threats to the security of IoT devices. It leaves
the major source of hidden danger. For instance, Mirai, the
most notorious botnet, leverages the default passwords to
affect millions of IoT devices. In fact, default credential
is a widespread security problem which is not limited to
IoT devices. Though this security problem has existed for
so many years, we have not seen any mitigating trends.
Meanwhile, it is surprising to notice that vendors rarely
offer countermeasures to mitigate this serious problem.

Vulnerability Attack. Zero-day vulnerability attacks
and N-days vulnerability attacks are seriously endangering
the security of all the IoT devices. It is unrealistic to solve
the Zero-day vulnerability thoroughly since the developer
cannot avoid the bug even if they are very cautious in
programming and code audit. Vendors have adopted sev-
eral strategies to mitigate this problem. For example, they
deploy the honeypots all over the world which can catch
the Zero-day vulnerabilities in the wild, and some vendors
choose not to disclose their firmware since hackers can
decompile the firmware to find the flaws. However, these
countermeasures are very inefficient since the honeypots
need to wait for the attacks passively and hackers can obtain
the firmware by other methods. Besides, the traditional
fuzzing method cannot directly apply to IoT firmware [18],
[19], [20]. While public pays more attention to Zero-day
vulnerabilities, N-days vulnerabilities actually bring even
serious risk to IoT devices [21]. N-days vulnerabilities are
a goldmine for hackers since the exploitation of these vul-
nerabilities are already publicly known. With the help of
IoT search engines, hackers can attack the exposed devices
through the Internet easily by using N-days vulnerabili-
ties [22], [23], [24].

3 EVALUATION METHODOLOGY AND SETUP

In this section, we first introduce the IoT devices that we
focus on in this paper. Then, we illustrate our experiments
on comparing the aforementioned five IoT search engines.
Besides, we describe how we collect data from the IoT search
engines and how we preprocess the raw data. Finally, we
introduce our evaluation scope.

3.1 Device Selection
While there are various types of IoT devices exposed to
the Internet, we focus on six representative types, of which
the three general-purpose devices and the other three are
specialized devices. For the general-purpose devices, we
select router, IP camera, and printer since they have been
broadly utilized in our daily lives. Previous works pay much
attention to the security of these three kinds of devices [22],
[25], [26]. For the specialized devices, we select mining device,
medical device, and Industrial Control System (ICS). Currently,
there are few works that focus on their security, especially
for the mining devices and medical devices. Nevertheless,
they are very important sectors in IoT. Therefore, it is neces-
sary and meaningful to conduct a comprehensive study to
understand their security. In addition to these six types, our
analysis can also be generally extended to other types of IoT
devices in a straightforward manner.

Router is one of the mostly widespread IoT devices and
therefore, it is also the hacker’s primary target. Even worse,
the large expose of routers to the Internet makes them more
vulnerable to the hackers. In our work, we focus on routers
and study their vulnerabilities. To make our research more
representative and concentrated, we choose five popular
types of routers, namely HUAWEI, TP-Link, D-Link, ASUS,
and MikroTik.

IP camera is indispensable in our daily life and has
millions of end users. It is reported that due to the mis-
configuration or other possible reasons, at least millions of
IP cameras are exposed to the Internet. Of course, these
exposed IP cameras become the ideal targets of the botnets.
In this paper, we choose some of the most popular IP camera
vendors including Hikvision, DAHUA, Axis, Avtech, and
Netwave, to explore the security threat they are facing
currently.

Printer is an essential part of our life and mostly used
in the social organizations, e.g., companies and colleges.
However, the vendors and the users have limited security
awareness of printers, and according to the Spiceworks
Survey [27] conducted by HP, only 16% of respondents
think that printers are under the high security risk. In our
work, we choose to analyze some of the most popular
printer vendors, including HP, Brother, EPSON, Canon, and
SAMSUNG. We use these devices as the representative
examples to evaluate the current security status of printers.

Mining Device, as a novel IoT device, has been rapidly
developed due to the increasing popularity of cryptocur-
rency, such as Bitcoin and Ethereum. Due to the relative
high economic value, it has become the hacker’s potential
target. The attacks against mining devices have already been
reported for several times currently [28]. Thus, we want to
figure out the current security status of mining devices. Spe-
cially, we choose the Antminer [29] and Claymore [30] as the
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target devices since the Antminer is the most well-known
Bitcoin mining device and Claymore is widely adopted in
mining the ethereum.

Medical Device is a relatively less popular IoT device
that the public may easily neglect its security problem.
These medical devices, which are closely related to the
patients’ privacy and health, however are exposed to the
Internet, making them be the easy targets for the cyber
attackers. In our work, we aim to figure out the current
security status of the medical devices, and experimentally
measure the vulnerabilities of GE Healthcare Softneta and
Dicoogle.

Industrial Control System (ICS) is a more specialized
Cyber-Physical System (CPS) that involves a great number
of infrastructures. ICS devices usually run or operate a
variety of customized protocols, e.g., Modbus and Siemens
S7, in the application layer. However, by exploiting these
customized protocols, we can easily identify the ICS devices
exposed to the Internet, which brings potential security
threats. Moreover, there already have reports of attacks on
ICS. For instance, in 2010, the Stuxnet [31] caused substantial
damage to Iran’s nuclear program. The security of ICS is
more critical than other IoT devices in a sense that it may
endanger the national security. In our research, we consider
Rockwell Automation, WAGO and Schneider Electric as the
primary targets. All of these devices have multiple N-days
vulnerabilities that are disclosed in CVE [32].

3.2 Search Engine Selection

As introduced in Section 2.1, there exist multiple IoT search
engines. Their searching ability and data accuracy rate
however vary greatly owing to the different searching
techniques and data maintaining strategies they use. Since
our measurement is based on the massive data collected
from the IoT search engines, it is essential for us to select
appropriate ones to collect data. Specifically, we evaluate
five different IoT search engines Shodan, Censys, Zoomeye,
Fofa and NTI with respect to four aspects, searching ability,
raw data accuracy, responding time, and scanning period.

Searching Ability. We prefer to select such an IoT
search engine that can provide sufficient data about all
the tested IoT devices. Thus, we perform a preliminary
comparison of the search engines in searching for specific
devices. We select six representative devices, including TP-
Link’s router, Hikvision’s IP camera, HP’s printer, Bitmain’s
mining device, Dicoogle’s PACS and ModbusGW. TP-Link,
Hikvision, HP, and Bitmain are all leading vendors in their
field. Besides, Dicoogle is one of the top 10 free open
source PACS projects [33] and has been studied by previous
work [34]. Moreover, ModbusGW is an essential part of
the IoT ecosystem that has been widely adopted in a great
number of application scenarios, such as connecting PLCs
in the SCADA network [35]. Of each search engine, we
use it to collect data about all the six types of devices in
a same week, as shown in Table 1. As the table shows,
Zoomeye collects the most exposed devices almost in all the
tested types, while Shodan and Censys collect the least.
The huge difference can be ascribed to two reasons: (i)
IoT search engines adopt different data storage strategies.
Shodan and Censys only present the records they collected

TABLE 1
Ability in Searching Specific IoT Devices

Devices Vendors Zoomeye Shodan Censys Fofa NTI
Router TP-Link 1,047,861 248,062 261,149 924,950 743,119

IP camera Hikvision 3,607,552 130,836 124,238 427,935 2,749,631
Printer HP 210,507 119,183 87,343 148,309 127,625

Antminer Bitmain 1,158 344 306 2,619 792
PACS Dicoogle 10 1 2 1 0

ModbusGW Modbus 47 14 8 9 36

TABLE 2
Data Accuracy Rate

Vendors Amount Zoomeye Shodan Censys Fofa NTI
Router

MikroTik 50K 84.09% 68.45% 77.32% 75.97% 81.48%
TP-Link 50K 88.23% 81.05% 76.71% 84.33% 90.34%

IP camera
Hikvision 50K 90.03% 79.53% 86.59% 83.29% 89.09%

Axis 50K 79.10% 74.68% 89.62% 71.83% 86.13%
Printer

HP 10K 94.63% 91.35% 92.27% 90.64% 88.03%
Brother 10K 86.82% 87.13% 86.19% 93.77% 91.75%

at the current year while Zoomeye, Fofa and NTI provide
all historical records they collected. (ii) IoT search engines
vary greatly in their scanning techniques. Zoomeye, NTI and
Fofa have more advanced scanning techniques which can
help them identify more IoT devices. For instance, Zoomeye
adopts two powerful detection engines Xmap and Wmap,
which perform better than Nmap [36] and Zmap [37].

Raw Data Accuracy. Second, we compare the accuracy
rate of the raw data collected from IoT search engines. The
accuracy rate is calculated as the ratio of valid data in the
raw data. We perform this trial on six representative devices,
including two routers from MikroTik and TP-Link, two IP
cameras from Hikvision and Axis, and two printers from
HP and Brother, as shown in Table 2. We use the method as
discussed in Section 3.3 to collect raw data and, to ensure
fairness, we collect all the device data over the same period
of five months (from 01/01/2018 to 06/01/2018). For router
and IP camera, we randomly collect 10,000 devices each
month with a total of 50, 000 devices. Since Censys only
collects a few exposed printers in this period, we randomly
collect 2, 000 printers each month with a total of 10, 000
printers for two vendors individually.

We leverage the scanner, which will be discussed in
Section 3.3 to filter out the invalid data in the raw data
collected by each of the IoT search engines. As shown in
Table 2, Zoomeye and NTI have better data accuracy than
other IoT search engines for most cases. Therefore, Zoomeye
and NTI are better candidates for users who prefer to use
the raw data collected from IoT search engines.

Responding Time. Third, we analyze the responding
time of each search engine to the newly exposed IoT devices.
This is an important metric to assess each search engine’s
ability which can accurately reflect their sensitivity to the
newly exposed devices. Towards this end, we deploy seven
servers worldwide on 11/19/2018, along with SSH service
at port 22 opened, which is widely used in a great number of
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TABLE 3
Responding Time and Scanning Period

IP Address Location Creation Time Zoomeye Shodan Censys Fofa NTI
Responding

Time
Scanning

Period
Responding

Time
Scanning

Period
Responding

Time
Scanning

Period
Responding

Time
Scanning

Period
Responding

Time
Scanning

Period
35.236.14.159 Los Angeles, U.S. 11/19/2018 12/07/2018 - 11/21/2018 16 days 11/20/2018 - 12/05/2018 19 days 11/27/2018 -
35.243.65.199 Tokyo, Japan 11/19/2018 12/07/2018 - 11/21/2018 16 days 11/20/2018 24 days 12/08/2018 22 days 12/05/2018 17 days
35.199.71.88 São Paulo, Brazil 11/19/2018 12/07/2018 - 12/04/2018 14 days 11/20/2018 - 12/10/2018 15 days 11/30/2018 -
47.88.63.131 Santa Clara, U.S. 11/19/2018 12/07/2018 - 12/10/2018 17 days - - - - 12/01/2018 18 days
47.75.43.192 Hongkong, China 11/19/2018 - - 12/01/2018 15 days 12/11/2018 - 12/06/2018 16 days 12/02/2018 21 days
66.42.94.35 Atlanta, U.S. 11/19/2018 12/08/2018 19 days 11/22/2018 15 days 11/20/2018 - 12/07/2018 20 days 11/21/2018 -

45.77.232.219 Sydney, Australia 11/19/2018 12/14/2018 21 days 11/24/2018 17 days 11/20/2018 - 12/02/2018 18 days 12/06/2018 -

IoT devices. We keep these severs for 60 days. Three of the
seven servers are from Google Cloud located in Los Angeles,
Tokyo and So Paulo, two of them are from Alibaba Cloud lo-
cated in Santa Clara and Hongkong, and the remaining two
are from Vultr located in Atlanta and Sydney. We deploy
seven servers to eliminate the accident error that the search
engine has already scanned servers before. We query each
IoT search engine per day, and obtain the returned records
that include the latest indexed data of these servers. We label
the date when the servers are scanned by search engines
for the first time after deployment, which we regard as the
responding time, as shown in Table 3. Shodan and Censys are
more sensitive to the newly exposed servers than the other
three IoT search engines. At the time when they are closed,
the servers from the Alibaba Cloud are still not scanned
by several search engines. To the best of our knowledge,
Alibaba Cloud have designed countermeasures to protect
against the scanning activities from IoT search engines, e.g.,
blocking the malicious IPs. From this perspective, Shodan
and NTI are more efficient in scanning the servers or devices
which have countermeasures to defend against the scanners.

Scanning Period. Finally, we measure the scanning
period of IoT search engines. The scanning period is the time
difference between two contiguous scannings. We list the
scanning period for each IoT search engine in Table 3. From
Table 3, we have the following important observations: (i)
Zoomeye, Censys and NTI rarely scan the same server twice in
a short time. We conjecture that they may ignore the server
which has been scanned recently in order to save cost. (ii)
Shodan, which scans the whole IPv4 space within every 17
days on average, has the shortest scanning period among
these five search engines. (iii) Shodan is the only one that
scans all the servers for more than once and Fofa scans the
whole IPv4 space within nearly every 18 days on average.

From the evaluation results, we observe that each IoT
search engine has its own advantages and disadvantages.
We summarize the evaluation results and analysis into a
set of recommendations for users and researchers. 1) We
recommend the users who prefer to conduct their research
on the most recent data to choose Shodan and Fofa since
these IoT search engines scan the Internet more frequently.
2) Shodan and Censys are appropriate for users who want
to collect the newly exposed IoT devices. 3) If the users
prefer to collect large-scale data, Zoomeye and NTI are better
candidates because these two IoT search engines store more
historical data and have a higher data accuracy rate.

In our following experiments, we use the Zoomeye to
collect routers, IP cameras, printers, medical devices and
ICS devices, and adopt the Fofa to collect mining devices.

Besides, we utilize Shodan to collect MQTT servers.

3.3 Data Collection and Preprocessing
Data Collection. With the help of IoT search engines,
we can collect millions of IoT devices. However, it also
requires extensive manual processing. In this paper, we first
review the search syntax guides provided by Zoomeye and
Fofa and construct 1, 281 keywords to query the IoT search
engines. The keywords are mainly constructed based on two
rules. The first rule is combining the vendor names with the
device types and versions. For instance, we construct the
keyword router app:”TP-Link TL-WR841N” to search the
TL-WR841N router of TP-Link on Zoomeye and the keyword
app=”Claymore-Miner” to search the mining devices of
Claymore on Fofa. The second rule is based on the network
features of these relatively less popular IoT devices, e.g.,
ICS. For example, the Siemens S7 protocol always use the
port 102 for communication. Thus, we can use the keyword
“port:102” to search the IoT devices that use the Siemens S7
protocol on Zoomeye.

Next, we remove the keywords which will return un-
expected results. We first query each constructed keyword
on IoT search engines and analyze the returned results. If
the returned results are different from our expectations, we
regard the corresponding keywords as invalid and remove
them from the database. For example, if a keyword which
is initially designed for searching the mining devices of
Claymore but it returns irrelevant results, we will delete this
keyword. After we test these 1, 281 keywords, we finally
remove 959 inappropriate keywords and obtain 322 valid
keywords. More specifically, as shown in Table 4, we collect
4, 278, 226 routers by using 104 keywords, 2, 844, 017 IP
cameras by using 82 keywords, 1, 341, 610 printers by using
84 keywords, 60,025 mining devices by using 5 keywords,
1, 897 medical devices by using 25 keywords and 29, 408
ICS devices by using 22 keywords. With these 322 carefully
selected keywords, we totally collect 8, 554, 183 IoT devices
in a week from 01/03/2019 to 01/10/2019 that vary from
six categories and involve 24 vendors.

Data Preprocessing. Previous works neglect or fail to
clearly explain how they deal with the invalid and outdated
data [38]. Actually, the invalid and outdated data may
seriously influence the performance of our measurement.
Thus, we aim to preprocess the raw data by filtering out the
invalid and outdated items. Specifically, our preprocessing
consists of the following three steps.

First, we delete the devices which have the same IPs
and remove the devices whose response time is over five
seconds. For the devices with long response time, they may
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TABLE 4
Data Selection and Preprocessing

Total Data Variation
Vendors

Specific Data Variation Keywords Variation
Records of

Banner Information Variation
Raw Data Processed Final Selected Raw Data Processed Final Selected Initial Data Final Selected Initial Data Final Selected

Router 4,278,226 1,349,076 500,000

HUAWEI 1,438,967 438,824 100,000 139 32 1,017 498

TP-Link 984,259 416,327 100,000 116 31 862 219

D-Link 1,031,242 247,098 100,000 69 17 426 153

ASUS 514,624 138,241 100,000 76 9 916 411

MikroTik 308,134 108,586 100,000 83 15 321 171

IP camera 2,844,017 973,520 500,000

Hikvision 802,371 341,471 100,000 91 23 852 309

DAHUA 534,295 186,319 100,000 82 14 608 86

Axis 413,287 121,072 100,000 36 16 240 72

Avtech 630,112 213,928 100,000 49 16 192 39

Netwave 463,952 110,730 100,000 40 13 201 15

Printer 1,341,610 402,721 310,000

HP 647,290 181,923 100,000 73 26 104 41

Brother 483,124 105,343 100,000 39 21 63 19

EPSON 86,478 51,368 50,000 58 20 117 53

Canon 51,328 22,394 20,000 23 12 77 5

Samsung 46,659 20,195 20,000 16 4 34 7

Octoprint 26,731 21,498 20,000 1 1 1 1

Mining Device 60,025 39,121 38,000
Claymore 50,987 30,712 30,000 11 2 4 1

Antminer 9,038 8,409 8,000 13 3 11 3

Medical Device 3,935 782 706
GE Healthcare 1,498 305 300 96 19 74 12

Softneta 316 92 92 6 3 15 6

Dicoogle 83 14 14 4 3 21 5

ICS
31,087 16,212 15,500

Rockwell Automation 9,731 5,183 5000 67 15 93 27

Schneider Electric 18,874 9,364 9000 81 6 85 11

WAGO 803 563 500 12 1 24 5

already stay away from the Internet or have a poor network
condition which may significantly increase the test time and
affect the credibility of the final measurement. After this
step, 5, 061, 289 devices are left.

Second, we collect sufficient banner information for each
kind of device. Banner is widely used on IoT devices to
display some important information, e.g., the information
displayed when users login to the server by SSH, which can
help identify the type of IoT devices. Nevertheless, with the
increasing number of IoT devices, each kind of devices has
its own banner information. Thus, in order to identify the
IoT devices accurately, we need to collect the banner infor-
mation as much as possible. We construct a list that contains
the categories of IoT devices and corresponding vendors
included in our raw dataset based on the constructed key-
words. Then, we collect the banner information relates to the
devices in the list. The IoT search engines listed in Section
2.1 provide millions of records of banner information they
used for identifying devices. We first manually select 6, 358
related records of the banner information, where 5, 622 are
collected from search engines and 736 are collected from the
Internet and the user guide of the devices.

Third, we develop our scanner based on the finger-
printing technique. Fingerprinting is an effective method
to identify the firmware version of IoT devices. Nmap [36]
and Zmap [37] are two state-of-the-art fingerprinting tools
that can utilize banner information to identify IoT devices.
In our work, we choose Nmap rather than Zmap, since
Nmap can provide much more details of target devices, and
the corresponding scanning time is acceptable. First of all,
the scanner will use Nmap to send HTTP requests to the

target devices and receive their response data. The response
data may contain the information of target devices, such as
vendor name (e.g. TP-Link), device type (e.g. router), device
model (e.g. TL-WR840N) and firmware version (e.g. 0.9.1).
Thus, we then compare the response data with our collected
banner information. If there is a match, we can confirm the
above information of target devices. During our preliminary
test, we find that some records of banner information are
inappropriate. We remove 4, 324 improper records of banner
information and 2, 034 records of banner information are
left. Based on these valid records of banner information,
the scanner supports identifying 1, 516 different models of
6 types of IoT devices from 24 vendors.

To test the accuracy of the scanner, we build a benchmark
that has 1,000 already identified IoT devices which belong
to 24 vendors we will test in this paper. For these 1,000
IoT devices, we manually analyze their response data and
review their GUI interfaces to confirm their exact vendors,
types, models and firmware versions. Next, we perform our
scanner on the benchmark and finally achieves 97.2% ac-
curacy. By using our scanner, we further remove 2, 280, 330
invalid devices which can not be identified by fingerprints.

Through our data preprocessing, we totally detect
5, 774, 224 invalid devices and obtain 2, 779, 959 valid de-
vices, including 1, 349, 076 routers, 973, 520 IP cameras,
402, 721 printers, 39, 121 mining devices, 411 medical de-
vices and 14, 547 ICS devices, as shown in Table 4. However,
we do not perform the analysis on the entirety of the
dataset due to three reasons. First of all, it is extremely time-
consuming to analyze such a large dataset. Second, since
the analysis will cost lots of time, some devices may already
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change the IP address or stay away from the Internet during
the experiment. Thus, we will keep a part of backup de-
vices to replace these inactive devices. Finally, for statistical
purposes and fairness, we try to adjust the number of the
same type of devices from different vendors to be consistent.
Thus, we randomly select 500K routers, 500K IP cameras,
310K printers, 38K mining devices, 406 medical devices, and
14.5K ICS devices, with a total of 1, 362, 906 IoT devices in
our evaluation dataset.

3.4 Evaluation Scope

In this paper, we mainly focus on the N-days vulnerabil-
ity problem of the IoT devices. While public pays more
attention to the zero-day vulnerability, N-days vulnera-
bilities actually bring more serious risks to IoT devices.
With the help of IoT search engines, hackers can attack
the exposed devices through the Internet easily by using
N-days vulnerabilities. The PoC-Checking method is the
most straightforward scheme to confirm the existence of N-
days vulnerabilities [39]. However, it is illegal to test online
IoT devices without ownership. The PoC-Checking method
will trigger and exploit the vulnerability of real-world IoT
devices, which may raise serious ethical concerns. Thus,
we choose to leverage the firmware fingerprinting method
to check whether the target devices are vulnerable [40].
The firmware fingerprinting technique will first send HTTP
requests to the target devices and obtain their response data.
It will then compare the response data from IoT devices
with our collected banner information to identify their exact
vendors, types, models and firmware versions. It supports
identifying 97.2% devices in our dataset that across from
407 different models of 6 types of IoT devices from 24
vendors. Since IoT vulnerabilities have a strong connection
with the firmware versions, we can check firmware versions
of the target devices to determine its vulnerability. In our
method, we first collect 73 N-days vulnerabilities, which
have disclosed the affected firmware versions. Then we use
our scanner, developed by the fingerprinting technique, to
identify the firmware versions of the 1, 362, 906 IoT devices
from six categories. Our objective is to figure out the propor-
tion of vulnerable devices and reveal the severity of existing
IoT devices regarding N-days vulnerabilities.

4 RESULTS AND ANALYSIS

In this section, we first analyze the unpatched N-days
vulnerability problem across millions of IoT devices.Then,
we conduct a further evaluation to explore the trending
of the vulnerable rate of IoT devices for six months. The
evaluation results reveal several flaws of the existing coun-
termeasures of vendors in preventing the unpatched N-days
vulnerability. Finally, we explore the relationship between
the vulnerability results of IoT devices and their locations.

4.1 Vulnerability Evaluation

We first collect 73 N-days vulnerabilities from the CVE
[32], EXPLOIT DATABASE [41] and SEEBUG [42] which
have disclosed the affected firmware versions, as shown
in Table 5. Then, we use our scanner, developed based on
the fingerprint technique, to identify the firmware versions

of target devices accurately. For the IoT devices, which are
still using the affected firmware versions, we regard them
as vulnerable devices.

Router Evaluation. First, we select 33 N-days vul-
nerabilities to evaluate the security of routers from five
vendors, HUAWEI, TP-Link, D-Link, ASUS and MikroTik,
with 100,000 routers per vendor and the corresponding
results listed in Table 5. From Table 5, we notice that
31, 363 routers suffer from at least one N-days vulnerability.
MikroTik has the highest vulnerable rate among these five
vendors. 18.04% MikroTik routers suffer from a newly dis-
closed vulnerability CVE-2018-14847 which was disclosed
one month before our test. For ASUS, we find 4.03% routers
are vulnerable to a five-year-long N-days vulnerability,
CVE-2014-9583, which alerts us that we cannot ignore the
severity of the aged vulnerability even though it has been
disclosed for many years. HUAWEI, TP-Link and D-Link
have a relatively low vulnerable rate (approximately 2%).
Through our extra study, we find that these three vendors all
provide automatic update mechanisms for the latest routers
which may result in their low vulnerable rate.

IP camera Evaluation. Second, we show our evaluation
on IP cameras from five popular vendors with 100,000 IP
cameras from each vendor. In total, we employ 18 vulnera-
bilities with the detailed results listed in Table 5. We observe
that the IP camera has a much more serious security status
than that of the router, where the vulnerable rates for all
the involved vendors are higher than 10%. Netwave reaches
an astonishing vulnerable rate that 80.42% IP cameras are
vulnerable to at least one N-days vulnerability. All of these
four vulnerabilities, that we selected to test the IP cameras of
Netwave, have been disclosed at least three months before
our test. Thus, we assume that Netwave does not push the
updates to the vulnerable devices timely. We select four
vulnerabilities to test Axis and Avtech, where both of them
achieve high vulnerable rates with 35.14% and 46.57%,
respectively. Hikvision and DAHUA have relatively low
vulnerable rates among these five vendors. It is worthy
noting that DAHUA suffers greatly from a six-year-long
vulnerability, CVE-2013-6117. In addition, since these two
vendors have exposed the most IP cameras to the Internet,
reaching tens of millions of scale, their security status are
much more serious than the other three vendors.

Printer Evaluation. Third, we evaluate the security
of printers from six well-known vendors. Though HP has
provided automatic update mechanisms for its printers, it
still has a high vulnerable rate of 25.52%. Possible reasons
are that 1) users need to manually activate the automatic
update mechanisms and 2) the mechanisms only exist in the
most recent versions of printers. Canon has a relatively low
vulnerable rate among these vendors, which also reaches
16.99%, and a six-year-long vulnerability still affects 4.20%
tested printers. Brother and EPSON have extremely high
vulnerable rates where more than 50% of the tested printers
are vulnerable. Compared to HP, these two vendors do not
provide automatic update mechanisms for their printers. We
only find one appropriate vulnerability, CVE-2012-4964, to
test SAMSUNG printers, which has been disclosed for seven
years. We observe that there are still 73 SAMSUNG printers
that suffer from this vulnerability. Octoprint provides a web
interface for 3D printers that can control and monitor the
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TABLE 5
Large-scale Vulnerability Evaluation

Vendor Dataset Total Vulnerable Devices N-days Vulnerabilities Severity Vulnerable Devices
Amount Vulnerable Rate Amount Vulnerable Rate

R
ou

te
r

HUAWEI 100K 885 0.885% CVE-2017-17215 High 601 0.60%
CVE-2015-7254 Medium 285 0.29%

TP-Link 100K 2,193 2.19%
CVE-2018-17004 17018 Medium 19 0.02%

CVE-2017-16957 High 874 0.87%
CVE-2018-11714 Critical 1,309 1.31%

D-Link 100K 1,472 1.47%

CNVD-2018-01084 High 718 0.72%
CVE-2018-9032 Critical 458 0.46%
CVE-2017-9675 High 192 0.19%
CVE-2018-10106 Critical 107 0.11%

ASUS 100K 8,216 8.22%

CVE-2014-9583 Critical 4,027 4.03%
CVE-2017-14698 Critical 2,410 2.41%
CVE-2017-5891 High 936 0.94%
CVE-2017-5892 High 955 0.96%

MikroTik 100K 18,597 18.60%
CVE-2018-14847 Critical 18,036 18.04%
CVE-2018-10070 High 317 0.32%

CVE-2018-1156 1159 High 647 0.65%

IP
ca

m
er

a

Hikvision 100K 18,104 18.10%

CVE-2014-4878 Critical 2,982 2.98%
CVE-2014-4879 Critical 3,147 3.15%
CVE-2014-4880 Critical 3,970 3.97%
CVE-2017-7923 High 9,261 9.26%

DAHUA 100K 13,499 13.50% CVE-2013-6117 High 11,815 11.82%
CVE-2017-7253 High 1,726 1.73%

Axis 100K 35,137 35.14% CVE-2018-9158 High 10,883 10.88%
CVE-2018-10660 10662 Critical 24,711 24.71%

Avtech 100K 46,571 46.57%

SSV-97347 High 14,950 14.95%
SSV-97159 Medium 2,945 2.95%
SSV-92493 High 5,606 5.61%
SSV-92494 High 27,352 27.35%

Netwave 100K 80,416 80.42%

CVE-2018-6479 High 15,081 15.08%
CVE-2018-11653 Critical 40,138 40.14%
CVE-2018-11654 High 68,030 68.03%
CVE-2018-17240 High 38,019 38.02%

Pr
in

te
r

HP 100K 25,518 25.52% CVE-2017-2741 Critical 25,518 25.52%

Canon 20K 3,398 16.99% CVE-2018-11692 Critical 2,559 12.80%
CVE-2013-4615 Medium 839 4.20%

Brother 100K 65,938 65.94% CVE-2017-7588 Critical 64,407 64.41%
CVE-2018-11581 Medium 3,206 3.21%

EPSON 50K 43,582 87.16% CVE-2018-5550 Medium 42,903 85.81%
CVE-2018-14899 14900 Medium 1,882 3.76%

SAMSUNG 20K 73 0.37% CVE-2012-4964 High 73 0.37%
Octoprint 20K 20,000 100% CVE-2018-16710 Critical 20,000 100%

Mining
Device

Claymore 30K 1,034 3.45%
CVE-2018-6317 Critical 382 1.27%

CVE-2018-1000049 High 72 0.24%
CVE-2017-16930 Critical 580 1.93%

Antminer 8K 4 0.04% CVE-2018-11220 High 4 0.04%

Medical
Device

GE Healthcare 300 2 0.67%
CVE-2017-14002 Critical 1 0.33%
CVE-2017-14006 Critical 1 0.33%
CVE-2017-14008 Critical 0 0

Softneta 92 0 0 EDB-ID-45347 Medium 0 0
Dicoogle 14 0 0 EDB-ID-45007 Critical 0 0

IC
S Rockwell Automation 5K 12 0.24% CVE-2018-19616 High 12 0.24%

WAGO 500 2 0.4% CVE-2018-16210 Medium 2 0.4%
Schneider Electric 9K 407 4.52% CVE-2017-6026 Critical 407 4.52%

printers’ activities. Nevertheless, all the tested Octoprint
printers are vulnerable to CVE-2018-16710 which allows
unauthenticated users to download the project files from
the printers. In addition, Octoprint does not regard it as
a vulnerability and only ascribes it to the users’ limited
security awareness.

Mining Device Evaluation. Then, we evaluate the
security of mining devices produced by two vendors, Clay-
more and Antminer, with four N-days vulnerabilities. We
find that 3.45% Claymore mining devices suffer from at
least one N-days vulnerability. For Antminer, we discover
that only 4 devices can be attacked by CVE-2018-11220.
Through our further study, we find the Antminer will push
the firmware update notification to users timely when the

vulnerability is repaired, which can help to explain such a
low vulnerable rate. With more and more mining devices
exposed to the Internet, the N-days vulnerability attack
problem should be seriously considered by mining devices
vendors.

Medical Device Evaluation. Furthermore, we investi-
gate the security of medical devices from three vendors, GE
Healthcare, Softneta and Dicoogle. According to our results,
medical devices suffer slightly from the N-days vulnerabil-
ity, where only two unsecured devices of GE Healthcare
are identified. However, we cannot neglect the potential
security threat since each unsecured medical device may
bring massive loss, even endanger the lives of patients.

ICS Evaluation. Finally, we choose three N-days
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TABLE 6
Further Vulnerability Evaluation

N-days Vulnerability Vendors Vulnerable Version Disclosure Date
Router

CVE-2017-17215 HUAWEI HG532 12/04/2017
CVE-2018-11714 TP-Link TL-WR840N/841N 06/04/2018
CVE-2018-9032 D-Link DIR-850L 03/26/2018
CVE-2018-6000 ASUS Before 3.0.0.4.384 10007 01/22/2018

CVE-2018-14847 MikroTik RouterOS before 6.43rc3 08/02/2018
IP camera

CVE-2017-7923 Hikvision V5.2.0-V5.4.0 04/18/2017
CVE-2018-10661 Axis Multiple models 05/02/2018

SSV-92494 Avtech All firmware versions 10/25/2016
CVE-2018-11654 Netwave All IP cameras 06/01/2018

Printer
CVE-2017-2741 HP PageWide/OfficeJet Printers 12/01/2016
CVE-2018-11692 Canon LBP6650/3370/3460/7750C 06/04/2018
CVE-2017-7588 Brother Multiple models 04/08/2017
CVE-2018-5550 EPSON Epson AirPrint 01/12/2018
CVE-2018-16710 Octroprint OctoPrint through 1.3.9 09/07/2018

vulnerabilities to measure the security of ICS from three
vendors, Rockwell Automation, WAGO and Schneider Elec-
tric. Schneider Electric has the highest vulnerable rate
among these ICS vendors, which reaches 4.52%. Rockwell
Automation and WAGO have very low vulnerable rates
(below 0.5%). However, the vulnerable ICS devices may
bring much more serious security issues than the general-
purpose IoT devices, e.g., router and IP camera. Therefore,
the security of ICS regarding N-days vulnerabilities still
requires serious consideration.

In addition to the above findings, we also notice that
vulnerable rate varies greatly from different kinds of IoT
devices. The vulnerable rates of IP camera and printer are
significantly higher than other devices. Most of the unse-
cured devices are general-purpose IoT devices, e.g., router,
IP camera and printer. The specialized devices have a very
low vulnerable rate in comparison with the general-purpose
IoT devices. However, we should pay more attention to the
security of specialized devices since they may bring more
massive loss than unsecured general-purpose devices.

In summary, we have identified that 385,060 devices still
suffer from at least one N-days vulnerability.

4.2 Further Vulnerability Evaluation on Specific De-
vices
According to our large-scale vulnerability evaluation in
Section 4.1, we find that the routers, IP cameras and print-
ers suffer greatly from the N-days vulnerabilities. In this
section, we explore the trending of the vulnerable rate of
these three kinds of devices for six months, which can
help us evaluate the vendors’ responses to the N-days
vulnerabilities. Specifically, we perform our evaluation on
routers, IP cameras and printers from 14 popular vendors
with one specific N-days vulnerability per vendor, as shown
in Table 6. We collect the historical data of six months for
each device with the range from three months before and
three months after the vulnerabilities were disclosed. We
only select the devices whose corresponding versions are
influenced by vulnerabilities.

First, we evaluate the vulnerable rate trending on routers
from five vendors with 1,000 routers per vendor per month,
as shown in Figure 1(a). MikroTik’s vulnerable rate varies

little among six months even though the MikroTik has
released the patched firmware on /04/23/2018 which is
four months before the vulnerability was released. A pos-
sible reason is that MikroTik does not notify all users of
vulnerable devices. In addition, the complicated firmware
updating process of MikroTik may also be an important
factor to the invariant vulnerable rate. Similar trends can
also be observed for the other four vendors. The routers
that are exposed to the Internet before the vulnerabilities
were disclosed still have high vulnerable rate while in
comparison the devices that are exposed after the disclosure
time have low vulnerable rate. We infer that the reason for
the downward trend is that the IP cameras with patched
firmware have entered the market. Even though these ven-
dors have already published the patched firmware (e.g.,
HUAWEI published the patched firmware of CVE-2017-
17215 on 02/06/2018), most users have not updated the
firmware yet. We conclude two possible reasons for this
serious security status: (i) tedious manual updating process
troubles a great number of users; (ii) vendors do not have an
effective notification method to notify all vulnerable users.

Second, we leverage four vulnerabilities to figure out
the vulnerable rate of IP cameras from four vendors with
1,000 IP cameras per vendor per month, as shown in Fig-
ure 1(b). Avtech and Hikvision have steady low vulnerable
rates for six months, which indicates that they have greatly
controlled the vulnerabilities. Netwave has an extremely
high vulnerable rate for six months with a slight downward
trend. Axis’s vulnerable rate decreases dramatically since
one month after the vulnerability was disclosed. A possible
reason is that the newly produced Axis IP cameras with
patched firmware have entered the market at that time.

Finally, we show our evaluation of five vendors’ printers
by using five specific vulnerabilities with 500 printers per
vendor per month. Note that we do not conduct experi-
ments on SAMSUNG since no IoT search engine provides
any record of SAMSUNG printer before 2014. As shown in
Figure 1(c), HP has a relatively steady low vulnerable rate
for six months. We ascribe this low rate to its automatic
update mechanisms. Nevertheless, around 25% HP printers
have not patched the vulnerability, CVE-2017-2741, yet.
For these vulnerable printers, we notice that they still use
outdated firmware. We infer that some of them may close
the automatic update mechanisms or HP does not provide
automatic update mechanisms on these vulnerable devices.
Canon has a higher vulnerable rate than HP which is still
lower than the other three vendors. EPSON and Brother
both have a high vulnerable rate for six months without
any downward trend. Though both of them allow users to
manually update the printers, the vulnerability to N-days
attack is not mitigated. Furthermore, the manually updating
process is complicated where the users need to download
the firmware from the official website and upload it to the
printers through the embedded web interface. Octoprint
maintains 100% vulnerable rate for six months, which indi-
cates that the vendor does not develop any countermeasures
to mitigate this severe vulnerability.

According to our further vulnerability evaluation, we
find that some vendors do not have an effective notification
method to inform the users of updating the firmware. Most
devices, which have been exposed to the Internet before
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Fig. 1. Vulnerable Rate Trending of Three Specific Devices

the vulnerabilities were disclosed, still have high vulnerable
rates. We notice that most devices’ vulnerable rates begin
to decrease since the newly produced devices with patched
firmware have entered the market. In addition, the devices
with automatic update mechanisms (e.g., Hikvision’s IP
cameras and HP’s printers) can well defend against the N-
days vulnerabilities. Overall, we conclude two root causes
of differences in patching curves: 1) Whether the vendors
have fixed the vulnerabilities in subsequent products in
time; 2) Whether the vendors provide automatic update
mechanisms to their products.

4.3 Geographical Difference

Since the IoT devices in our dataset are distributed all over
the world, their vulnerability may have a connection with
geography. Thus, we conduct an analysis to explore the
relationship between the vulnerability results of IoT devices
and their locations. We measure the number of vulnerable
devices in each country, and for each kind of IoT device, we
select the top-5 countries that contain the most vulnerable
devices of this kind for further in-depth analysis. We obtain
the geolocation of vulnerable IoT devices based on the
information provided by the IoT search engine. The IoT
search engine returns multiple kinds of information of IoT
devices, including their geolocation according to several IP
geolocation database providers. Table 7 shows the details
of these selected countries, based on which we have the
following observations.

First of all, we find the vulnerable routers are mainly
concentrated to a limited number of countries. For the
vulnerable routers of HUAWEI, most of them are located
in Mexico. For the vulnerable routers of TP-Link, D-Link,
ASUS, and MikroTik, it is surprising to observe that the
United States are all included in the top-5 countries list of
these four kinds of devices. When it comes to analyze the
distribution of all the vulnerable routers, we find China has
always been among the top-5 countries. We also observe
that most of the vulnerable routers of D-Link, ASUS and
MikroTik are all located in China.

Secondly, the ratio of the vulnerable IP cameras of the
top-5 countries vary greatly from different vendors. For
Hikvision, the vulnerable IP cameras are mainly located in
China and Vietnam, accounting for more than 55% of all
vulnerable devices. Then, the top-5 countries account for
84.9% of all vulnerable IP cameras from DAHUA. For Axis,
the United States contains more than 60% of vulnerable IP
cameras which is far beyond other countries. For Avtech,
we find the top-5 countries are all located in Southeast Asia
and Thailand has the most vulnerable IP cameras. Next, two
European countries, France and Germany, account for 50%
of all vulnerable IP cameras from Netwave.

Thirdly, the vulnerable printers from different vendors
are mainly located in the United States. In addition to
the United States, China has the second largest number of
vulnerable printers, which is included to the top-5 list of
HP, Canon, Brother, EPSON and Octoprint. We also find that
the printers located in South Korea are in a very dangerous
situation since a significant number of vulnerable printers
of vendors (except Octoprint) are located in South Korea.

Then, we find most vulnerable mining devices are
mainly located in China and the United States. For Clay-
more, China, the United States, Russia, Germany and India
are the top-5 countries with the most vulnerable devices.
For Antminer, we notice that 3 of 4 vulnerable devices are
in China and the remaining one is in the United States.

Next, we find that only GE Healthcare has two vulnera-
ble devices, both of which are located in Germany.

Finally, vulnerable ICS devices are only distributed in
a few countries. All vulnerable devices from Rockwell Au-
tomation are located in three countries: the United States,
Germany and France. Next, two vulnerable devices of
WAGO are both in the United States. For Schneider Electric,
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the United States has nearly 70% of vulnerable devices
while there are 83 for Germany and 47 for China.

Overall, we have confirmed that the location has a
significant relationship with the security of IoT devices.
Several countries, e.g., the United States and China, con-
tain much more vulnerable devices than others. Besides,
the geographical distribution of vulnerable devices varies
greatly between different kinds of IoT devices and different
vendors.

5 CASE STUDIES

In this section, we provide two case studies as important
extensions to the study in Section 4. we revealed the in-
depth findings based on two further experiments. First, we
study how many IoT devices in our dataset are infected by
the botnet. We then focus on the security of IoT devices’
message center - MQTT servers.

5.1 Infected IoT Devices by Botnets

Our measurement results in Section 4 show that 385, 060
(28.25%) IoT devices are still under the threat of at least
one N-days vulnerability. Many of those vulnerable devices
might have already been identified and infected by hackers
before our research. Hence, we attempt to use NetworkScan
Mon [43] and OpenData [44] provided by 360 NetLab [45]
to identify vulnerable devices that have been previously
infected.

OpenData provides us a set of the latest bot IPs that are
identified by 360 NetLab, thus we first compare the IPs of
vulnerable devices with these identified bot IPs. Through
this comparison, we can preliminarily figure out part of the
infected devices in our dataset. For the remaining devices,
we use the NetworkScan Mon to identify whether they are
infected or not. The NetworkScan Mon can detect active
scanners on the Internet and capture more than 10k scanner
IPs every day. Then, it adopts a neat way, which has not yet
been disclosed to the public, to monitor their scan activities.
The NetworkScan Mon provides us a dataset consisting of
the device activities within 30 days. We query the remaining
devices in the activity dataset provided by NetworkScan
Mon, and label the device as infected if abnormal activities
are observed (e.g., scanning the port 22 for more than
100 times). Combining the results returnd by OpenData
and NetworkScan Mon, we finally identify the infected IoT
devices among the vulnerable devices collected in Section 4.

Table 8 shows the statistics of the infected devices that
are identified by us. We find that a large number of IoT
devices are infected by botnets and all of them belong to
router, IP camera, or printer. Printer has the least number of
infected devices though it has the largest number of vulner-
able devices. Router and IP camera are the primary targets
of botnet because they could provide sufficient network
conditions to DDoS attack. It is worthy noting that a part of
infected devices do not suffer from N-days vulnerabilities,
implying that the botnet may have other methods to attack
the IoT devices. For the three specialized devices, though
some of them are vulnerable to the N-days vulnerability at-
tack, none of them has been infected by botnet. We speculate
that the hackers have less interests in infecting specialized

devices since the specialized devices are less exposed to the
Internet and have weaker N-days vulnerability compared to
the general-purpose IoT devices.

The botnets have the ability to hide themselves [11]: they
can close the network services that are running on infected
devices, e.g., Telnet and SSH. In addition, the botnets make
the infected devices silent until they send control commands
to these infected devices. Therefore, the analysis of our
experiments is a conservative investigation of the real world
security issues of IoT devices, which in practice might be
severer.

5.2 Unsecured MQTT Servers

MQTT [7] is a machine to machine (M2M) connectivity pro-
tocol. An MQTT system consists of clients communicating
with a server, where the server is also known as “MQTT
server”. Recently, millions of IoT devices, especially the
smart homes, communicate frequently with MQTT servers.
A large portion of devices in our dataset also have connec-
tion with the MQTT servers. However, the MQTT servers
also suffer greatly from security threats.

We first identify 64, 309 live MQTT servers exposed to
the Internet, where most are deployed on popular Cloud
Service Platforms, including Amazon Web Services (AWS),
Google Cloud, and Microsoft Azure. However, due to the
misconfiguration, a large number of these MQTT servers
have no password protection, making the IoT devices con-
nected to these unsecured MQTT servers easily controllable
by hackers.

We analyze 14, 477 unsecured MQTT servers that are
deployed on five popular cloud service platforms, as shown
in Table 9. AWS, Google Cloud and Microsoft Azure provide
detailed IP ranges while Alibaba Cloud and Tencent Cloud
do not. With the explicit IP ranges, we can collect the
exposed MQTT servers that are deployed on AWS, Google
Cloud, and Microsoft Azure. In addition, Shodan allows
users to query the search engine by using the ISP infor-
mation of the cloud services providers. By combining the
two methods above, we collect a great number of exposed
MQTT servers that are deployed on the five cloud services
platforms.

We find that a great number of MQTT servers have no
password protection. Therefore, we are able to connect to
these unsecured MQTT servers directly and access sensi-
tive data that are transferred between the IoT devices and
MQTT servers. Alibaba Cloud has the most exposed MQTT
servers and the highest vulnerable rate, which is defined as
the proportion of unsecured MQTT servers out of all the
exposed MQTT servers. For Alibaba Cloud, there are 6,936
MQTT servers exposed to the Internet and 92.6% of them
have no password protection. AWS has 3,314 unsecured
MQTT servers, which is sightly less than that of Alibaba
Cloud. The other three cloud service platforms also have
high vulnerable rates: more than 80% of the exposed MQTT
servers have not set the password.

We notify all the affected cloud service providers and
provide them with the IP address of the vulnerable servers.
During the time we wrote this paper, AWS, Google Cloud,
Tencent Cloud and Alibaba Cloud have responded to our
report. Specifically, AWS, Google Cloud and Alibaba Cloud
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TABLE 7
Top-5 Countries With the Most Vulnerable IoT Devices

Vendors Vulnerable
Devices Top-5 countries With the Most Vulnerable Devices

Router

HUAWEI 885 Mexico (35.3%) U.K. (23.3%) China (16.6%) Germany (9.4%) Turkey (4.4%)
TP-Link 2,193 U.S. (46.8%) China (29.5%) Turkey (4.4%) Brazil (4.3%) Russia (3.7%)
D-Link 1,472 China (46.4%) U.S.(21.1%) Brazil (14.0%) Russia (5.0%) Italy (3.5%)
ASUS 8,216 China (40.0%) U.S. (25.6%) Russia (11.9%) Singapore (7.1%) Sweden (6.3%)

MikroTik 18,597 China (32.1%) Russia (22.2%) Brazil (11.1%) Indonesia (10.2%) U.S. (6.1%)

IP camera

Hikvision 18,104 China (37.1%) Vietnam (21.4%) U.S. (8.1%) Mexico (7.1%) Brazil (5.5%)
DAHUA 13,499 Brazil (35.0%) China (18.1%) U.S. (12.9%) Spain (10.5%) Thailand (8.4%)

Axis 35,137 U.S. (63.7%) Germany (14.7%) Japan (6.8%) France (6.3%) Mexico (2.9%)
Avtech 46,571 Thailand (45.3%) Indonesia (23.3%) Vietnam (13.5%) Malaysia (8.6%) China (6.5%)

Netwave 80,416 France (42.1%) Germany (13.3%) U.S. (11.4%) China (10.7%) Argentina (10.6%)

Printer

HP 25,518 U.S. (27.3%) China (24.0%) South Korea (18.3%) Brazil (12.4%) Canada (10.9%)
Canon 3,398 U.S. (21.4%) China (19.5%) South Korea (18.5%) Brazil (11.6%) Chile (9.9%)
Brother 65,938 U.S. (45.3%) Canada (21.8%) China (17.7%) Germany (11.1%) Japan (10.6%)
EPSON 43,582 U.S. (27.2%) South Korea (22.9%) China (20.0%) Japan (11.5%) Germany (8.2%)

SAMSUNG 73 U.S. (56.2%) South Korea (43.8%) - - -
Octoprint 20,000 U.S. (35.6%) Germany (35.3%) U.K. (10.7%) Italy (7.7%) Spain (7.5%)

Mining
Device

Claymore 1,034 China (54.4%) U.S. (22.1%) Russia (8.8%) Germany (3.6%) India (3.4%)
Antminer 4 China (75.0%) U.S. (25.0%) - - -

Medical
Device GE Healthcare 2 Germany (100.0%) - - - -

ICS
Rockwell Automation 12 U.S. (50.0%) Germany (25.0%) France (25.0%) - -

WAGO 2 U.S. (100.0%) - - - -
Schneider Electric 407 U.S. (68.1%) Germany (20.4%) China (11.5%) - -

TABLE 8
Infected IoT Devices by botnets. #IDT represents the number of

Infected Devices of the Total Devices. #IDV represents the number of
Infected Devices of the Vulnerable Devices.

Vendors Total
Vulnerable

Devices #IDT / #IDV

R
ou

te
r

HUAWEI 100K 885 191 / 3
TP-Link 100K 2,193 22 /19
D-Link 100K 1,472 63 / 11
ASUS 100K 8,216 215 / 167

MikroTik 100K 18,597 409 / 394

IP
ca

m
er

a Hikvision 100K 18,104 526 / 513
DAHUA 100K 13,499 108 / 72

Axis 100K 35,137 636 / 580
Avtech 100K 46,571 362 / 314

Netwave 100K 80,416 85 / 73

Pr
in

te
r

HP 100K 25,518 341 / 201
Canon 20K 3,398 2 / 2
Brother 100K 65,938 94 / 91
EPSON 50K 43,582 19 / 16

Octoprint 20K 20,000 0 / 0
SAMSUNG 20K 73 0 / 0

Mining
Device

Claymore 30K 1,034 0 / 0
Antminer 8K 4 0 / 0

Medical
Device

GE Healthcare 300 2 0 / 0
Softneta 92 0 0 / 0
Dicoogle 14 0 0 / 0

IC
S Rockwell Automation 5K 12 0 / 0

WAGO 500 2 0 / 0
Schneider Electric 9K 407 0 / 0

acknowledge our work and send our security concern to
the users of vulnerable servers while Tencent Cloud does
not regard it as the security threat and ignores our report.
We retest these unsecured MQTT servers after we have
notified the cloud service platforms for two weeks. Though
Microsoft Azure has not responded to our report yet, its
vulnerable rate drops down by 9.1% from the first test. We
positively infer that the Microsoft Azure has notified the

TABLE 9
Unsecured MQTT Servers

Platforms Total Vulnerable Servers
First Test Second Test

Amazon Web Services 4070 3314 (81.4%) 2942 (72.3%)
Alibaba Cloud 6936 6420 (92.6%) 6236 (89.9%)
Google Cloud 999 874 (87.5%) 801 (80.2%)

Microsoft Azure 1226 1030 (84.0%) 918 (74.9%)
Tencent Cloud 1246 1102 (88.4%) 1044 (83.8%)

users of vulnerable servers. The vulnerable rate of AWS
has dropped down to 72.3% while the Alibaba Cloud,
Google Cloud and Tencent Cloud still have more than 80%
unsecured MQTT servers. All of these five cloud service
platforms still have a great number of MQTT servers with
no password protection even after we have notified them.
In summary, the notification strategy of cloud service plat-
forms and the limited security awareness of users need
further attention for future development of IoT security.

6 DISCUSSION

Ethics. In this work, we conduct N-days vulnerability test
on 1,362,906 IoT devices, which may raise serious ethical
concerns. In consideration of these potential hazards, we
pay special attention to the legal and ethical boundaries.
First, we collect all the data from IoT search engines, which
is a legitimate manner and common practice to obtain
data [11], [38], [46]. Second, we choose to leverage the
firmware-fingerprinting method rather than the traditional
PoC-Checking method to test the IoT devices. The firmware-
fingerprinting method is an acceptable way to test online
devices without ownership since it neither triggers nor
exploits the vulnerability [40]. Finally, we are particularly
careful to ensure the privacy of vulnerable devices. We
report our results to the related vendors which help mitigate
the security threats (as acknowledged by these vendors).
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Limitations. There are two major limitations in our
work. First, our vulnerable device detection method is based
on a simple validation mechanism: whether the target de-
vice’s firmware version is included in the affected firmware
of the corresponding N-days vulnerabilities. Nevertheless,
the correctness of the assumption highly depends on the
correctness of the affected firmware versions claimed by
the N-days vulnerabilities. Thus, there may exist the false-
positive case in our final results due to the incorrectness
claims of the N-days vulnerabilities. To solve this issue, we
selected the N-days vulnerabilities whose affected firmware
versions are confirmed by the vendors, based on which, we
can eliminate most false-positive cases. Moreover, in consid-
eration of the ethical issues and our large-scale dataset, it is
the only acceptable way that can meet our evaluation goal.
Though the PoC-Checking method has higher accuracy in
identifying the vulnerable devices, we cannot perform the
PoCs directly on the IoT devices without ownership.

Second, when we conduct the case study of detecting
the IoT devices infected by botnets, it is hard to confirm
whether the N-day vulnerability is the cause of infection
since the default credential attack may also be a possible
cause. In this case study, we try our best to conduct a more
in-depth analysis about the security status of IoT devices.
Our analysis does reveal the severe security issues of theses
devices, call for stronger protection.

Future Work. Vulnerability notification is still an
open research problem for vendors and researchers [11]. IoT
devices lack a public communication channel such that we
cannot reach the owners of vulnerable devices directly. Even
if we provide detailed information about vulnerable devices
to the related vendors, it is difficult for them to notify the
vulnerable users. The traditional notification strategies, such
as obtaining the information from WHOIS records, are not
suitable for notifying IoT devices.

Moreover, there is still a lack of effective countermea-
sures to mitigate security threats to IoT devices. Yang et
al. designed the multipath onion IoT gateways to hide the
hackable smart home from remote attacks [47]. Sharma et
al. presented a study of the Zero-day threats for IoT devices
and proposed a context graph based framework for miti-
gating Zero-day attacks [24]. However, the applicability of
two methods are limited since they cannot be generally ex-
tended to most IoT devices. Recently, deception defense [48],
which is an emerging technology for cyber security, has
been introduced to protect large-scale systems. Deception
defense is designed to protect against the Zero-day and N-
days vulnerability attack as well as default credential attack,
which are also the prominent security challenges of IoT
devices. Therefore, we plan to develop a system based on
deception defense to protect the IoT devices in the future.

7 RELATED WORK

IoT Search Engines Study. IoT search engines have
become an important tool for researchers. Several studies
have evaluated the ability of IoT search engines or leveraged
them to analyze the security of IoT devices. Bodenheim et al.
evaluated Shodan’s ability in searching PLC and proposed
a potential method to defend against Shodan [49]. Genge
et al. developed a Shodan-based vulnerability assessment

tool which aims at assessing the automated and passive
vulnerabilities of Internet-facing services [50]. Simon et al.
conducted a contactless vulnerability analysis with the help
of Shodan and Google [38]. Antonakakis et al. [11] and
Hastings et al. [46] both use Censys to collect data for their
experiments.

IoT Device Fingerprinting. Feng et al. [51] utilized the
the banner of 17 industrial control protocols, e.g, Siemens S7
and BACnet, to identify cyber-physical system devices on
the Internet. Li et al. [40] designed generating fine-grained
fingerprints based on the subtle differences between the
filesystems of various firmware images. They introduced the
NLP to process the file contents to obtain the fingerprints.

Large-Scale Analysis of IoT Security. Several studies
have been proposed to assess the security of IoT devices.
Cui et al. developed an embedded device default credential
scanner, and evaluated the default credential usage prob-
lem in embedded devices at a world-wide scale [52], [53].
Heninger et al. investigated the security of weak keys on
a broad scale and discovered that insecure RNGs are in
widespread use, leading to a significant number of vulner-
able RSA and DSA keys [54]. Hastings et al. discovered
the usage of a great number of weak keys [46]. Costin
et al. evaluated the security of IoT devices at firmware
level [22], [23]. Fernandes et al. found the vulnerabilities of
emerging IoT frameworks [55], and proposed Flowfence [56]
which offers data flow protection for these frameworks. In
addition, the security of IoT applications has also become
a popular research direction. Celik et al. presented SAINT,
a static taint analysis tool for IoT applications, to track
the sensitive information in IoT applications [26]. They
further proposed SOTERIA to validate the safety, security,
and functional properties of IoT applications [57]. Kumar
et al. [25] conducted a large-scale analysis of IoT devices in
real-world homes. They figured out the differences in IoT
devices among regions. Their work mainly focuses on the
IoT devices in the household that are not exposed to the
Internet while we focus on the IoT devices exposed to the In-
ternet. Alrawi et al. [58] evaluate the security of home-based
IoT devices based on components analysis. They focus on
the security of the IoT devices in five components while we
focus on the N-days vulnerability problem in IoT devices.
Granjal [59] analyzed existing protocols and mechanisms to
secure communications in the IoT, as well as open research
issues. Neshenko [60] focused on the ever-evolving IoT
vulnerabilities and presented a first look on Internet-scale
IoT exploitations. Humayed et al. [61] proposed an intensive
literature review of CPS security based on their framework.
They dedicated to providing a comprehensive overview of
the state-of-the-art on CPS security.

8 CONCLUSION

In this paper, we present a large-scale empirical study on the
vulnerability of 1, 362, 906 deployed IoT devices lasting ten
months. Furthermore, we perform the first systematic com-
parative study of five well-known IoT search engines and
reveal the differences among them. We confirm that the N-
days vulnerability attack is still a prominent security threat
for IoT devices that need urgent attention. We also show a
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broad view of vendors’ defenses against these attacks and
discover several limitations of these defenses.

Our work is a reminder to the public that the common
security problems still seriously affect a significant number
of IoT devices, and the existing countermeasures of vendors
need further consideration and improvement.
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